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Numerical solution of continuity equation with a flux
non-linearly depending on the density gradient
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Abstract

An approach to integrate transport equations with fluxes being complex non-linear functions of physical parameters
and their gradients, as it is predicted by theoretical models for micro-instabilities in plasma, is proposed. This approach
operates without any splitting of the flux on diffusive and convective components often involved in transport calculations.
As an example, computations of the density profile in a stationary state and during dynamic evolution are done with the
Weiland’s transport model. The results obtained by the proposed method and a conventional one with a flux splitting are
compared.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

By considering transport processes in fusion plasma it is conventional to speak about such characteristics as
particle and heat diffusivities and advection velocity. This approach is originated in the traditional view on the
mass and heat transfer as caused by collisions of individual particles. In hot magnetized plasma, such a situ-
ation is described by the classical theory in a straight magnetic field and by the neoclassical one in a toroidal
geometry [1]. Under conditions, where these theories are relevant, they predict fluxes, e.g., of charged particles,
as being uniquely represented by the sum of diffusive component proportional to the density gradient and con-
vective one proportional to the density itself.

However, hot plasma prone to diverse micro-instabilities, which result in a complex turbulent motion of
plasma particles and enhance mass and heat transfer tremendously [2]. The resulting anomalous transport
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exceeds the classical and neoclassical contributions by many orders of magnitude. There are several sophisti-
cated transport models, in particular, multi mode model (MMM) [3], gyro Landau fluid model (GLF23) [4],
which predict particle and heat fluxes by taking into account diverse instability mechanisms, e.g., due to radial
gradients of ion and electron temperatures, the presence of trapped particles and so on. Since these instabilities
are driven by the plasma inhomogeneities, the resulting fluxes are complex non-linear functions of the
gradients.

By using these models in transport codes [5–7] for the computation of plasma parameter profiles, the fluxes
are normally splitted on diffusive and convective contributions in order to apply well developed approaches
for numerical integration of the second-order differential equations. Such a separation serves also as an
approximate tool for interpretation of experimental data in customary concepts of diffusion and advection.
However, a definitive answer to the question about the uniqueness of individual transport coefficients, both
reconstructed from experimental measurements under usually ambiguous assumptions about the time and
spatial behavior of these characteristics, and obtained by a splitting of theoretically predicted fluxes, is not
provided yet.

Therefore, development of direct methods for integration of transport equations without flux splitting on
diffusive and convective parts would be very helpful in order to clarify this situation and to offer a firm basis
for the prediction of parameter profiles in future devices. In the present paper such an approach is elaborated
and demonstrated on the example of the well known Weiland’s transport model [2], being at the core of the
MMM, for the charged particle flux. This model allows to calculate the contributions to the anomalous trans-
port from ion temperature gradient (ITG) and collisionless trapped electron (TE) unstable modes. The predic-
tions by the method outlined are compared with the results obtained by a standard approach involving the
splitting of the flux into diffusive and convective parts.

In this paper, only the basic aspects of the method proposed will be presented. Therefore, no attempts are
done here to compare the results of calculations with experimental measurements. Moreover, many details
important for a sophisticated modeling of particular experimental conditions are omitted. For example, the
magnetic surfaces are considered in a cylindrical approximation by ignoring such their features as elongation,
triangularity or the presence of X-points. Nevertheless, the metric coefficients, in which these characteristics
are involved by a one-dimensional consideration, can be straightforwardly taken into account. In addition,
the particle source is assumed in a very primitive form, by describing the recycling neutrals at the plasma edge
in a diffusion approximation. A more detailed source model can be, however, easily introduced.

2. Basic equations

Time evolution of the plasma density n is governed by the continuity equation. After averaging over cylin-
drical magnetic surfaces this looks like as follows:
on
ot
¼ S � 1

r
oðrCrÞ

or
ð1Þ
where Cr is density of plasma flux along the radial co-ordinate r and S is the density of the charged particle
source due to ionization of neutral particles. By discretization in time, i.e., with the replacement on/ot by
(n � n�)/s, where n = n(t,r), n� = n(t � s,r) and the time step s is small enough, one gets
n ¼ n� þ s S � 1

r
oðrCrÞ

or

� �
ð2Þ
with S and Cr computed for n�.
The explicit approach above requires normally very small time steps and becomes usually unstable if the

particle source and flux are non-linear functions of n and orn. In order to cope with this situation, Eq. (2)
is often reduced to a second-order equation with respect to the spatial co-ordinate r, for which reliable meth-
ods of numerical integration are elaborated, see, e.g., Ref. [8]. For this purpose, the flux density Cr is splitted
on diffusive and convective parts, being proportional to orn and n, respectively:
Cr ¼ �Dornþ Vn ð3Þ
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Such a splitting is unique only for a linear transport model when one can find D and V independent of orn

and n. For a non-linear flux one cannot justify that a certain splitting is the most preferable one. Moreover, the
time evolution of the density profile is determined, according to Eqs. (1) and (2), by the total flux Cr and any
splitting procedure should provide the same result. This is, however, not guaranteed a priori due to non-lin-
earities involved in the problem and if different n(t,r) arise by using different splitting schemes, doubts about
this approach are legitimate.

Here, we propose an implicit method to integrate Eq. (1) numerically without any artificial splitting of the
flux into parts, which works reliably for strongly non-linear transport models. By taking into account that Cr

reduces to zero at the plasma axis, r = 0, Eq. (2) is multiplied by r and integrated from r = 0 to the radial posi-
tion in question. As a result one gets the flux continuity relation:
Cr ¼ UðrÞ ð4Þ

with
UðrÞ � 1

r

Z r

0

S � n� n�
s

� �
r dr ð5Þ
With the known density profile at the previous time moment, n�(r), and some approximation for n(r), one
can computes U(r). The procedure for computing of the next approximation to n(r) is started from the last
closed magnetic surface r = a. Here, a boundary condition, relating the local values of n and orn, is normally
imposed:
anðaÞ þ bornðaÞ ¼ d ð6Þ

The transport model prescribes Cr as a non-linear function of n, orn and other parameters pj: Cr =

Cr(n,orn,pj). In this study, which includes only particle transport, pj are known functions of r. Eqs. (4) and
(6) combined provide a non-linear algebraic equation for n(a):
Cr nðaÞ; d� anðaÞ
b

; pjðaÞ
� �

¼ UðaÞ ð7Þ
which can be solved by some numerical approach. In order to find n(a � h), where h is the spatial grid incre-
ment, the gradient at r = a � h is determined by interpolating linearly the behavior of n(r) on the interval
a � h 6 r 6 a: orn(a � h) � [n(a) � n(a � h)]/h. This results in the following equation for n(a � h):
Cr nða� hÞ; nðaÞ � nða� hÞ
h

; pjða� hÞ
� �

¼ Uða� hÞ ð8Þ
Note that through the function U(r) Eqs. (7) and (8) contain the information about the particle source S,
which is especially important at the plasma edge. In a steady state the source term provides the only contri-
bution to U. In the following section, by considering a particular example, we discuss how to proceed in the
case when Eq. (8) has more than one solution.

The procedure above is continued to the plasma axis, providing a new approximation for the density pro-
file, nnew(r). The new approximation to U is calculated according to the relation:
Unew ¼ ð1� AmixÞUþ AmixUðnnewÞ

where U(nnew) is determined from Eq. (5) with n(r) ” nnew(r). Iterations are repeated till the deviations between
two consequent approximations of some control parameters, n(r = 0), n(r = a), and Cr(r = a), become smaller
than 10�4Amix. The maximum level of the mixture factor Amix is restricted by the condition of the iteration
convergence, as discussed in the following section.

It should be noticed that the approach outlined above requires iterations even in the case of a linear trans-
port model when the splitting of the flux on convective and diffusive parts is unique. Therefore, in such a sit-
uation it seems to be more time consuming than standard approaches like finite volume method [8]. However,
it does not happen automatically because the source of charged particles depends non-linearly on their density
and thus iterations are necessary by any approach. For a flux varying non-linearly with the density gradient
the number of iterations needed for convergence is consequently increased.
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Many technical aspects, e.g., approximations for time and spatial derivatives are considered above on a
very simple level. More sophisticated approaches can improve the convergence and reduce time consumption
significantly. One important issue is, e.g., the use of more accurate methods for the time integration. A simple
one-sided finite difference approximation applied above implies a linear time variation of the solution. In sit-
uations, where this exceptional behavior is by far not realized, the centered time derivative is more preferable.
In this case (n � n�)/s provides the derivative at t � s/2. The most straightforward way to estimate the right-
hand side of Eq. (1) at this time is to use the arithmetically averaged of its values at times t and t � s, although,
more sophisticated methods may be also applied.

For very small s an explicit representation of the time derivative, through the values of the variable at pre-
vious time steps only, is more advantageous than the implicit one chosen above. This is due to the large error
arising if the current approximation to n(t,r) is even slightly different from the ‘‘correct’’ one. As it is shown in
the following section the latter results in the increasing number of iterations with decreasing s when this is
below a certain level. An appropriate combination of both explicit and implicit representations of the time
derivative has to be used by a further development of the method proposed.
3. Example of application

3.1. Transport model

In order to demonstrate the approach proposed, this is applied to the continuity equation (1) with the par-
ticle flux given by the Weiland’s transport model [2]. It takes into account drift instabilities due to the ion tem-
perature gradient and collisionless trapped electrons. Small perturbations of the plasma density, electric
potential, ion and electron temperatures, en; e/ and eT i;e, respectively, induced by instabilities are assumed in
the form of Fourier harmonics proportional to exp(ikxx + ikyy � ixt). The components of the wave vector
in the radial direction x and in the direction y perpendicular to x and the magnetic field, kx and ky, respec-
tively, define the complex eigen frequency x through the dispersion relation obtained from linearized fluid
equations and quasi-neutrality condition [2]:
bxð1� �Þ þ � 7
3
� g� 5

3
�

� �
� k2

yq
2
s ðbx þ 1þ gÞ bx þ 5

3
�

� �
bx2 þ 10

3
�bx þ 5

3
�2

¼ 1� ft þ ft
bxð1� �Þ � � 7

3
� g� 5

3
�

� �
bx2 � 10

3
�bx þ 5

3
�2

ð9Þ
where bx ¼ x=x�; x� ¼ csqsky=Ln is the electron drift frequency; cs ¼
ffiffiffiffiffiffiffiffiffiffiffi
T=mi

p
;mi; qs ¼ cs=Xci and Xci are the

ion sound speed, mass, Larmor radius and frequency, respectively; Ln = �n/orn, LT = �T/orT the radial
e-folding lengths for the density n and temperature T, whose unperturbed values are assumed the same for
electrons and ions; � = 2Ln/R, g = Ln/LT and ft ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2r=ðRþ rÞ

p
the fraction of trapped particles with R being

the major torus radius.
The dispersion relation is solved as an algebraic equation for x and the mode with the maximum growth

rate c = Imx is selected. This and the requirement that the perturbations are not suppressed by Landau damp-
ing result in ky ’ 0.3/qs and kx ’ 2

ffiffiffi
2
p

p=qs � Lnbs=ðqRÞ [2], with q being the safety factor and bs ¼ d ln q=d ln r
the magnetic shear.

The density of the particle flux is determined as Cr � en eV �E þ c:c:, where eV E ¼ �ikyce/=B is the radial drift
velocity due to perturbed electric field, which is estimated in a quasi-linear approximation providing for the
perturbation of electrostatic potential e/ ’ cB=ðckxkyÞ [2]; B is the magnetic field. This results in
Cr ¼ ftnV �
g1

g2

c3

�4
ð10Þ
with V � ’ 0:6ðqqs

pbsR
Þ2cs, g1 ¼ jbx j2ð1� �Þ � bxr

14
3
� 2g� 10

3
�

� �
�� 5

3
� 11

3
þ 2gþ 7

3
�

� �
�2 and g2 ¼ ½bx2

r � c2� 10
3
bxr�þ

5
3
�2�2 þ 4c2 bxr � 5

3
�

� �2
.

Fig. 1 displays the �-dependence of Cr computed for the parameters in the interior of tokamak TEXTOR
[9]: R = 1.75 m, r = 0.3 m, BT = 2.25 T, q = 2, s = 1, n = 4 · 1019 m�3, T = 500 eV, LT = 0.3 m. One can see
that the flux is a complex non-linear function of the density e-folding length, which even changes its sign for
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Fig. 1. Particle flux density versus the parameter 1/� = R/2Ln computed according to the Weiland’s transport model [2].
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small density gradient orn = �2n/(�R). Normally, this is interpreted as the presence of an inward convective
flux component, the so-called pinch-effect.

With a linear approximation applied in the previous section in order to estimate orn(r), one gets the relation
�ðrÞ ¼ 2

1�nðrþhÞ=nðrÞ
h
R. Thus, Eq. (4) is a non-linear algebraic equation for n(r) with a unique solution for U(r) > 0,

see Fig. 2, that can be found easily numerically. In the case U(r) 6 0, which can happen on the density ramp
up stage with n > n�, the solution is not unique if UðrÞ > Cmin

r . In order to cope with this, we have to extend the
transport model also for negative � corresponding to a positive density gradient. The assumptions in the trans-
port model used are not satisfied in this case and for � < 0 we assume Cr = �D0on/or ” 2D0n/(R�) with some
prescribed D0. Fig. 2 shows the resulting N-like �-dependence of Cr for D0 = 0.1 m2/s. Thus, there are three
solutions for Cmin

r 6 UðrÞ 6 0 and the root closest to that found at r + h is selected. For UðrÞ < Cmin
r an unique

solution exists again. Since at the last closed magnetic surface (LCMS), r = a, Cr is always positive, �(a) and
n(a) are defined uniquely and the total n(r) profile is also unique. At the positions, where U(r) = 0 and
UðrÞ ¼ Cmin

r the density gradient undergoes a sharp change between I and III branches of the Cr(�) curve.
The gradient values corresponding to the unstable branch II cannot be realized in the framework of the pres-
ent transport model with quasi-stationary determined amplitudes of perturbations.

The results of computations done by the method proposed have been compared with those obtained by a
flux splitting on diffusive and convective parts. The splitting is done according to the recipe:
Fig. 2.
r is de
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oð�ornÞ
; V ¼ Cr þ Dorn
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Particle flux density versus the parameter 1/� continued into the range of positive density gradient. The value � at the radial position
termined by the equality Cr = U(r).
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Here, r is a free parameter assumed constant over the plasma radius. It is introduced in order to examine
the influence of a deviation in the flux splitting from the prescription with r ” 1 adopted in the MMM [3]. The
latter would provide the correct unique diffusivity in the case of a linear transport model. In addition, the dif-
fusivity D is restricted by the minimum value 0.1 m2/s to avoid unphysical non-positive values. Fig. 3 shows
the �-dependence of the transport coefficients obtained according to Eq. (11) with r = 1 for the flux displayed
in Fig. 1.
3.2. Results of calculations

For particular calculations it was assumed that the particle source is due to neutral beam injection and ion-
ization of neutrals recycling through the LCMS. The beam source density, Sb, is determined by the beam
power Pb, the energy of injected particles Eb, and the shape of the power absorption, which is assumed as
a Gaussian one with the characteristic width rb:
Fig. 3.
restric
Sb ¼
P b

2p2Rr2
bEb

�
exp � r2

r2
b

� �
1� exp � a2

r2
b

� � ð12Þ
The recycling source density, Sr = nakin, is determined with the neutral density na computed in a diffusive
approximation [10]. This implies that the rate coefficient of charge-exchange with ions, kcx, is much larger than
that of ionization by electrons, ki. Therefore, cold primary neutrals, which enter the plasma volume, undergo
charge-exchange and acquire the ion energy much earlier than they could be ionized. In this case, na is mainly
given by the hot neutral density, which is governed by the continuity equation:
1

r
d

dr
�rDa

dna

dr

	 

¼ �kinna ð13Þ
where Da ¼ T
maðkiþkcxÞn and ma are the diffusivity and mass of atoms, respectively. It is assumed here that the

temperature of hot neutrals is the same as that of the plasma. The diffusion approximation allows, neverthe-
less, to take into account a difference between these characteristics and, therefore, the heat transfer between
neutrals and ions by charge-exchange processes [11]. Moreover, the neutral model assumed can be easily ex-
tended by including cold neutrals explicitly [11].
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The diffusivity and pinch-velocity found from the particle flux density displayed in Fig. 1 according to Eq. (11) with r = 1 and D

ted by the minimum value 0.1 m2/s.
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The boundary condition at the LCMS implies a given probability Rrec for neutrals to recycle back into the
plasma after recombination of ions and electrons on the wall:
Da

dna

dr
ðaÞ ¼ CrðaÞRrec ð14Þ
At the LCMS the e-folding length dn for the plasma density is fixed, i.e., a = 1, b = dn and d = 0 are
assumed in Eq. (6). Computation have been done for the TEXTOR parameters cited above and Pb = 1.5 MW,
Eb = 50 keV, rb = 0.3 m, a = 0.46 m, Rrec = 0.98, dn = 0.1 m. This study deals with the particle transport only
and does not include any consideration of the heat transfer or redistribution of the electric current. Therefore,
prescribed radial profiles of the plasma temperature T, assumed the same for electrons and ions, and of the
safety factor q have been used, see Fig. 4. The initial profile of the plasma density, n(0,r), is also shown there.

Fig. 5 shows comparison of the plasma density profiles found in the steady state with s =1 by the present
and standard methods. All solutions are converged with an accuracy of 10�5. Although the agreement between
different approaches is good enough, the difference between the profiles exceeds significantly the error of com-
putations. The difference is much more pronounced in the case of computations with a small s. Fig. 6 displays
the change in the density profile, Dn, with respect to the initial one after one time step s = 3 ms. One can see
that the results obtained by the standard method and represented by dashed curves, differ significantly for r
varying in a relatively narrow range. The drop in the density at r [ 0.25 m for the flux splitting case is due to
the fact that in this plasma region, more exactly from the position, where the density profile makes the break,
the particle diffusivity is equal to its minimum value 0.1 m2/s and the pinch-velocity is very close to zero.
Therefore, the initially peaked profile is flattened by the diffusion and the central density decreases. Attempts
to reduce the minimum level of diffusivity results in a very unstable operation of the solver for the continuity
equation because the factor by the highest second-order derivative becomes too small. The dependence on the
splitting scheme, being in contradiction to the fact that only the total flux defines the profile evolution, seems
to be intrinsic for the splitting approach. It is rooted not in some drawbacks of the numerical scheme but in the
non-linear dependence of the flux on the plasma density and its gradient, which requires many iterations to get
a converged solution. In the case of a non-linear flux no one of splitting schemes can pretend to be the most
truthful one. Therefore, this approach does not provide the unique profile evolution, which nevertheless exists
and is determined by the total flux. Namely, this evolution is given by the approach proposed here and dis-
played by the solid curve in Fig. 6.

In order to reduce time consuming the possibly largest mixture factor Amix has to be used. It turns out that
the maximum level of Amix, above which iterations do not converge, depends essentially on the time step. The
n(t=0)/10  m
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Fig. 4. Radial profiles of the plasma temperature T, safety factor q and initial density n(t = 0) used in computations.
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Fig. 5. Density profiles in the stationary state computed by the approach with the flux splitting (dashed lines) and by the presently
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and by the proposed method (solid line).
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restriction Amix < min(1,10s), with s measured in ms, has been envisaged for the conditions modelled above.
Also the total number of iterations necessary for one time step depends on s. Computations on a grid with 300
equidistant knots and with s =1 provide directly the stationary state after 367 iterations; one time step with
s = 1 s, 0.1 s, 0.01 s and 1 ms requires, respectively, 242, 64, 163 and 737 iterations. The increase of the number
of iterations with s decreasing below a certain level demonstrates an advantage to use an explicit approach to
evaluate the time derivative for small s. In general, the method proposed has good convergence properties, i.e.,
the error always steadily reduces with consequent iterations. This is because integration is generally a more
numerically stable procedure than differentiation.

4. Conclusion

Fluxes predicted by theoretical transport models are complex non-linear functions of parameter gradients.
An approach to integrate continuity equation with such a flux, without a splitting on diffusive and convective
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parts, is proposed. Computations were performed with the Weiland’s transport model taking into account
drift instabilities due to the ion temperature gradient and collisionless trapped electrons. The profiles provided
by this approach do not coincide with those obtained by making a flux splitting, which are different for dif-
ferent splitting procedures in contradiction to the fact that only the total flux is of importance.

There are no principal limitations to apply the approach proposed to model plasma conditions closer to
those in ITER, i.e., with edge or/and internal transport barriers. Such a development will be done in near
future.
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